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Refined regions are organized into logically-rectangular patches.!
Refinement is performed in time as well as in space.!

Block-Structured Local Refinement (Berger and 
Oliger, 1984) 
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•  Think of AMR as a compression technique for the discretized mesh!

•  Apply higher resolution in the domain only where it is needed!

•  When should you use AMR:!
•  When you have a multi-scale problem!
•  When a uniformly spaced grid is going to use more memory than 

you have available to achieve the resolution you need!

•  You cannot always use AMR even when the above conditions are met!
•  When should you not use AMR:!

•  When the overhead costs start to exceed gains from compression!
•  When fine-coarse boundaries compromise the solution accuracy 

beyond acceptability !

Why use AMR and  When ? 

Much as using any tool in scientific computing, you should know what are 
the benefits and limits of the technologies you are planning to use  



•  Machinery needed for computations :!
•  Interpolation, coarsening, flux corrections and other needed 

resolutions at fine-coarse boundaries!

•  Machinery needed for house keeping :!
•  The relationships between entities at the same resolution levels!
•  The relationships between entities at different resolution levels!

•  Machinery needed for parallelization :!
•  Domain decomposition and distribution among processors !

• Sometimes conflicting goals of maintaining proximity and load 
balance!

•  Redistribution of computational entities when the grid changes due 
to refinement!

•  Gets more complicated when the solution method moves away 
from explicit solves !

The Flip Side - Complexity 
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§  A self contained computational 
domain 

§  Apply computational stencils 
§  The halo cells may come from same 

level exchanges or from a coarser 
level through interpolation 

§  If there is no sub-cycling, the 
interface is simple, all patches can 
get their halos filled simultaneously 

§  With sub-cycling either the 
application or the infrastructure can 
control what to fill when  

Most structured AMR methods use the same abstraction for semi-implicit solvers 
such as multigrid, in the sense they operate on a block/box at a time, the 

operations in between and the orchestration gets more complicated  

Abstraction for Explicit Methods 



•  Locally refine patches where needed to improve the solution.!
•  Each patch is a logically rectangular structured grid.!

o  Better efficiency of data access.!
o  Can amortize overhead of irregular operations over large number 

of regular operations.!
•  Refined grids are dynamically created and destroyed.!

Approach 



•  Fill data at level 0 !
•  Estimate where refinement is 

needed!
•  Group cells into patches 

according to constraints 
(refinement levels, grid 
efficiency etc)!

•  Repeat for the next level!
•  Maintain proper nesting!

Building the Initial Hierarchy 



How Efficiency Affects the Grid 

Efficiency=0.5 Efficiency=0.7 Efficiency=0.9 



•  Consider two levels, coarse and fine with refinement ratio r!

!
•  Advance !
•  Advance fine grids r times!
•  Synchronize fine and coarse data!
•  Apply recursively to all refinement levels!

Adaptive in Time 



• Mixed-language model: C++ for higher-level data structures, Fortran for 
regular single-grid calculations.!
• Reuseable components. Component design based on mapping of 
mathematical abstractions to classes.!
• Build on public-domain standards: MPI.Chombo also uses HDF5!
• Interoperability with other tools: VisIt, PETSc,hypre.!
• The lowest levels are very similar – they had the same origin!
• Examples from Chombo!

The Two Packages: Boxlib and Chombo  
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Distributed Data on Unions of Rectangles 

Provides a general mechanism for distributing data defined on unions of 
rectangles onto processors, and expressing communications between 
processors.!
!

Metadata, of which all processors have a copy. BoxLayout is a collection of 
Boxes and processor assignments: {Bk,pk}k=1,ngrids . 
DisjointBoxLayout:public Boxlayout is a BoxLayout for which 
the Boxes must be disjoint!



Data on Unions of boxes 

Distributed data associated with a DisjointBoxLayout. Can have 
ghost cells around each box to handle intra-level, inter-level, and domain 
boundary conditions. Templated (LevelData) in Chombo.!



Interpolation from coarse to fine 

•  Linearly interpolates data from 
coarse cells to the overlaying 
fine cells.!
•  Useful when initializing newly-
refined regions after regridding.!
Example:!
!ProblemDomain fineDomain;!
DisjointBoxLayout coarseGrids, fineGrids;!
int refinementRatio, nComp;!
LevelData<FArrayBox> coarseData(coarseGrids, nComp);!
LevelData<FArrayBox> fineData(fineGrids, nComp);!
!
FineInterp interpolator(fineGrids, nComp, refinementRatio,!
                        fineDomain);!
!
// fineData is filled with linearly interpolated coarseData!
interpolator.interpToFine(fineData, coarseData);!
!



CoarseAverage Class 
•  Averages data from finer levels 
to covered regions in the next 
coarser level.!
•  Used for bringing coarse levels 
into sync with refined grids 
covering them.!
Example:!
!DisjointBoxLayout fineGrids;!
DisjointBoxLayout crseGrids;!
int nComp, refRatio;!
!
LevelData<FArrayBox> fineData(fineGrids, nComp);!
LevelData<FArrayBox> crseData(crseGrids, nComp);!
!
CoarseAverage averager(fineGrids, crseGrids, nComp, 
refRatio);!
!
averager.averageToCoarse(crseData, fineData);!
!



Coarse-Fine Interactions (AMRTools)   

The operations that couple different levels of 
refinement are among the most difficult to 
implement, as they typically involve a combination 
of interprocessor communication and irregular 
computation.!

•  Interpolation between levels (FineInterp).!
• Averaging down to coarser grids 
(CoarseAverage).!

•  Interpolation of boundary conditions 
(PiecewiseLinearFillpatch, 
QuadCFInterp, higher-order extensions).!
•  Managing conservation at refinement 
boundaries (LevelFluxRegister).!



PiecewiseLinearFillPatch Class 

Linear interpolation of coarse-
level data (in time and space) 
into fine-level ghost cells.!
Example:!
!ProblemDomain crseDomain;!
DisjointBoxLayout crseGrids, fineGrids;!
int nComp, refRatio, nGhost;!
Real oldCrseTime, newCrseTime, fineTime;!
!
LevelData<FArrayBox> fineData(fineGrids, nComp, 
nGhost*IntVect::Unit);!
LevelData<FArrayBox> oldCrseData(crseGrids, nComp);!
LevelData<FArrayBox> newCrseData(crseGrids, nComp);!
!
PiecewiseLinearFillPatch filler(fineGrids, coarseGrids, nComp,!
                                crseDomain, refRatio, nGhost);   !
Real alpha = (fineTime-oldCrseTime)/(newCrseTime-oldCrseTime);   !
filler.fillInterp(fineData, oldCrseData, newCrseData, alpha,!
                  0, 0, nComp);!
!
!
!



LevelFluxRegister Class 

The coarse and fine fluxes are computed at different points in the 
program, and on different processors. We rewrite the process in the 
following steps.!



Example: explicit heat equation solver on a 
single grid.!

c Fortran code:!
      subroutine heatsub2d(phi,nlphi0, nhphi0,nlphi1, nhphi1,!
     &     nlreg, nhreg, dt, dx, nu)!
!
      real*8  phi(nlphi0:nhphi0,nlphi1:nhphi1)!
      real*8 dt,dx,nu!
      integer nlreg(2),nhreg(2)!
!
c Remaining declarations, setting of boundary conditions goes here.!
!
       do j = nlreg(2), nhreg(2)!
         do i = nlreg(1), nhreg(1)!
            lapphi = (phi(i+1,j) +phi(i,j+1) +phi(i-1,j) +phi(i,j-1)!
     &                -4.0d0*phi(i,j))/(dx*dx)!
!
            phi(i,j) = phi(i,j) + nu*dt*lapphi!
         enddo!
       enddo!
!
      return!
      end!



Example: explicit heat equation solver on a 
single grid.!

// C++ code:!
!
  Box domain(IntVect:Zero,(nx-1)*IntVect:Unit);!
  FArrayBox soln(grow(domain,1), 1);!
  soln.setVal(1.0);!
!
  for (int nstep = 0;nstep < 100; nstep++)!
 {!
  heatsub2d_(soln.dataPtr(0),!
           &(soln.loVect()[0]), &(soln.hiVect()[0]),!
           &(soln.loVect()[1]), &(soln.hiVect()[1]),!
             domain.loVect(), domain.hiVect(),!
             &dt, &dx, &nu)!
 }!



ChomboFortran!

ChomboFortran is a set of macros used by Chombo for:!
•  Managing the C++ / Fortran Interface.!
•  Writing dimension-independent Fortran code.!

Advantages to ChomboFortran:!
•  Enables fast (2D) prototyping, and nearly immediate extension to 3D.!
•  Simplifies code maintenance and duplication by reducing the 
replication of dimension-specific code.!

!



Previous C++/Fortran Interface!
•  C++ call site:!
!
heatsub2d_(soln.dataPtr(0),!
           &(soln.loVect()[0]), &(soln.hiVect()[0]),!
           &(soln.loVect()[1]), &(soln.hiVect()[1]),!
             domain.loVect(), domain.hiVect(),!
             &dt, &dx, &nu);!
!
•  Fortran code:!
!
 ! !subroutine heatsub2d(phi,iphilo0, iphihi0,iphilo1, 
iphihi1,!
     &                     domboxlo, domboxhi, dt, dx, nu)!
!
      real*8  phi(iphilo0:iphihi0,iphilo1:iphihi1)!
      real*8 dt,dx,nu!
      integer domboxlo(2),domboxhi(2)!
!
Managing such an interface is error-prone and dimensionally dependent (since 3D 
will have more index arguments for array sizing).!



C++ / Fortran Interface with ChomboFortran !

•  C++ call site:!
!
   FORT_HEATSUB(CHF_FRA(soln),!
                CHF_BOX(domain),!
                CHF_REAL(dt), CHF_REAL(dx), CHF_REAL(nu));!
•  Fortran code:!
!
   subroutine heatsub(CHF_FRA[phi], CHF_BOX[domain],!
     &                CHF_REAL[dt], CHF_REAL[dx], CHF_REAL[nu])!
!
ChomboFortran expands the argument lists on both sides depending on the 
dimensionality of the problem. On the Fortran side, it also generates the type 
declarations for the arguments automatically, along with appropriate header files to 
be included in the C++ code.!



Dimension-independence with ChomboFortran !
•  Looping macros: CHF_MULTIDO!
•   Array indexing: CHF_IX!
!
Replace!
 !  do j = nlreg(2), nhreg(2)!
         do i = nlreg(1), nhreg(1)!
            phi(i,j) = phi(i,j) + nu*dt*lphi(i,j)!
         enddo!
      enddo !
!
with!
!
 CHF_MULTIDO[dombox; i;j;k]!
        phi(CHF_IX[i;j;k]) = phi(CHF_IX[i;j;k]) !
     &                     + nu*dt*lphi(CHF_IX[i;j;k])!
      CHF_ENDDO!
!
Prior to compilation, ChomboFortran replaces the indexing and looping macros 
with code appropriate to the dimensionality of the problem. !



Elliptic Solver Example: LinearSolver virtual 
base class   

class LinearSolver<T>!

{!

// define solver!

virtual void define(LinearOp<T>* a_operator, bool 
a_homogeneous) = 0;!

!

// Solve L(phi) = rhs !

virtual void solve(T& a_phi, const T& a_rhs) = 0;!

...!

}!

LinearOp<T> defines what it means to evaluate the operator (for example, 
a Poisson Operator) and other functions associated with that operator. T can 
be an FArrayBox (single grid), LevelData<FArrayBox> (single-
level), Vector<LevelData<FArrayBox>*> (AMR hierarchy).!



•  We have seen how construct AMR operator in Chombo as series of sub-operations!
•  Coarse interpolation, fine interpolation, boundary conditions, etc.!

•  Matrix-free operators!
•  Low memory: good for performance and memory complexity!
•  Can use same technology to construct matrix-free equation solvers!

•  Operator inverse!
•  Use geometric multigrid (GMG)!
•  Inherently somewhat isotropic!

•  Some applications have complex geometry and/or anisotropy!
•  GMG looses efficacy!
•  Solution: algebraic multigrid (AMG)!

•  Need explicit matrix representation of operator!
•  Somewhat complex bookkeeping task but pretty mechanical!
•  Recently developed infrastructure in Chombo support matrix construction!
•  Apply series of transformations to matrix or stencil!

•  Similar to operator but operating matrix/stencil instead of field data!
•  Stencil: list of <Real weight, <cell, level>>!

•  Stencil + map <cell, level> to global equation number: row of matrix!
•  Start with A0 : initial operator matrix !

•  Eg, 1D 3-point stencil: {<-1.0, <i-1,lev>, <2.0, <i,lev>, <-1.0, <i+1,lev>}!

Matrix representation of operators 



PETSc Composite Grid Solvers: PetscCompGrid 

class LinearSolver<T>!

{!

virtual void createOpStencil(IntVect,int,const 
DataIndex&,StencilTensor &) = 0;!

PetscErrorCode createMatrix(int a_makePmat=0);!

Mat getMatrix() const { return m_mat;!

}!

class PetscCompGridPois : public PetscCompGrid!

{!

void createOpStencil(IntVect,int,const 
DataIndex&,StencilTensor &);!

}!



PETSc Composite Grid Example:  
PetscCompGridPois  

void !

PetscCompGridPois::createOpStencil( IntVect a_iv, int a_ilev,const 
DataIndex &a_di_dummy, StencilTensor &a_sten)!

{!

  Real dx=m_dxs[a_ilev][0],idx2=1./(dx*dx);!

  StencilTensorValue &v0 = a_sten[IndexML(a_iv,a_ilev)];  !

  v0.define(1);!

  v0.setValue(0,0,m_alpha - m_beta*2.*SpaceDim*idx2);!

  for (int dir=0; dir<CH_SPACEDIM; ++dir) {!

   for (SideIterator sit; sit.ok(); ++sit) {!

     int isign = sign(sit());!

     IntVect jiv(a_iv); jiv.shift(dir,isign);!

     StencilTensorValue &v1 = a_sten[IndexML(jiv,a_ilev)];!

     v1.define(1);!

     v1.setValue(0,0,m_beta*idx2);!

}}}!



PETSc AMR Solver Example: 
 releasedExamples/AMRPoisson/execPETSc 

Solve(Vector<DisjointBoxLayout> grids, Vector<LevelData<FArrayBox> *> phi, Vector<LevelData<FArrayBox> *> rhs)!

{ !

 PetscCompGridPois petscop(0.,-1.,s_order);!

 RefCountedPtr<ConstDiriBC> bcfunc = !

! !RefCountedPtr<ConstDiriBC>(new  !

! !ConstDiriBC(1,petscop.getGhostVect()));!

 BCHolder bc(bcfunc);!

 petscop.define( cdomains, grids, refratios, bc, cdx*RealVect::Unit );!

 ierr = petscop.createMatrix(); CHKERRQ(ierr);!

 Mat A = petscop.getMatrix();!

 ierr = MatGetVecs(A,&x,&b); CHKERRQ(ierr);!

 ierr = petscop.putChomboInPetsc(rhs,b); CHKERRQ(ierr);!

 ierr = KSPCreate(PETSC_COMM_WORLD, &ksp); CHKERRQ(ierr);!

 ierr = KSPSetOperators(ksp, A, A); CHKERRQ(ierr);!

 ierr = KSPSetFromOptions(ksp); CHKERRQ(ierr);!

 ierr = KSPSolve(ksp, b, x); CHKERRQ(ierr);!

 ierr = KSPDestroy(&ksp); CHKERRQ(ierr);!

 ierr = a_petscop.putPetscInChombo(x, phi); CHKERRQ(ierr);!

}!



•  We can think of these transformations as matrix or operators operating 
on one global matrix (not a good way to implement)!
•  Range and domain space of these operators is critical!

•  Start with A0 : initial operator matrix !

•  B: Boundary conditions for ghost cells off of domain!
•  Need one op. for each direction (for corner points)!

•  C: Interpolate ghost cells on domain (supported by coarse cells)!
•  F: interpolate cells covered with fine cells!

•  F removes covered cells from range and domain: 
Needs two operators F2 & F1 

left and right application 
 
Result: A := F2 � A0

 � B �C � F1 
 

Approach as matrix transformations 



•  Start with raw op stencil A0, 5-point stencil 

•  4 types of cells: 
•  Valid (V) 

•  Real degree of freedom cell in matrix 
•  Boundary (B) 

•  Ghost cell off of domain - BC 
•  Coarse (C) 

•  Ghost cell in domain 
•  Fine (F)  

•  Coarse cell covered by fine 

• “raw” operator stencil A0 composed of all 4 types 
•  Transform stencil to have only valid cells 

•  B, C & F operator have 
•  domain space with all types (ie, B, C, F) 
•  range space w/o its corresponding cell type 

•  That is, each operator filters its type 
•  Thus after applying B, C & F only valid cells 
remain 
•  Note, F removes F cells from range and 
domain: 

• Needs two operators F2 & F1 

• left and right application 

Approach from Stencil view 
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   A0B	
  

A0BC	
   F2A0BCF1	
  

Cartoon of stencil for cell    as it is transformed     
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Extended patch <level=1, patch=0> 

Level 0 

Level 2 

Example: Laplacian with 3 AMR levels 
(dx = 61/2 on level 1) 

(Invalid nesting region!!!) 

local cell 
IDs 

(implicit 
ordering from 
box iterators) 
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Local IDs on level 1.!
Simplify notation:!

eg, 5 == <5,1>!
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FABMatrix B  
* = -1 for Dirichlet 

* = 1 for Neumann. 
Use higher order 

in practice. 
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SpaceDim parts 
 (x & y here). 
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Polytropic Gas Example 

•  Demonstrates integration of conservative laws (e.g., the Euler equations of gas dynamics) on 
an AMR grid hierarchy.!

•  Uses unsplit, second-order Godunov method.!
•  One of the released examples in Chombo distribution!
•  Look under $CHOBO_HOME/releasedExamples/AMRGodonov/execPolytropic!
•  Source code:!

•  AMRLevel specialized for this set of problems in ../srcPolytropic!
•  Main in ./amrGodunov.cpp!
•  The executable name includes options used in the build!

amrGodunov2d.Linux.64.g++.gfortran.OPTHIGH.ex!
•  Compiled using g++ and gfortran!
•  High optimization!
•  For Linux!
•  No MPI!

•  We use ramp.inputs to provide runtime parameters!



Parameters 

Length of the run!
•  godunov.max_step = 200!
•  godunov.max_time = 0.064!

Shape of the patch!
•  # godunov.num_cells = 32 8 4!
•  godunov.num_cells = 64 16 8!

Grid refinement parameters!
•  godunov.max_level = 2!
# For 2D!
•  godunov.ref_ratio = 4 4 4 4 4!
# For 3D!
•  # godunov.ref_ratio = 2 2 2 2 2!

Regridding parameters!
•  godunov.regrid_interval = 2 2 2 2 2 2!
•  godunov.tag_buffer_size = 3!
•  godunov.refine_thresh = 0.015!

Grid generation parameters!
•  godunov.block_factor = 4!
•  godunov.max_grid_size = 32!
•  godunov.fill_ratio = 0.75!



Experimenting with Parameters 
Default Change ref_ratio to 2 

Variations in 
output with 
change in 
refinement 
parameters 


